
/

You can view this report online at : https://www.hackerrank.com/x/tests/864906/candidates/16704370/report

Full Name: **********

Email: **********

Test Name: talegri - developer auction test

Taken On: 17 Aug 2020 21:34:56 CEST

Time Taken: 60 min/ 60 min

Invited by: Urs

Invited on: 12 Aug 2020 13:37:28 CEST

Skills Score: Problem Solving (Basic) 0/50

Problem Solving (Intermediate) 37/75

SQL (Basic) 50/50

Tags Score: Algorithms 37/75

Arrays 37/125

Binary Search 37/75

Data Structures 37/75

Easy 50/100

Interviewer Guidelines 50/100

Joins 50/50

Loops 0/50

Medium 37/75

Problem Solving 37/125

SQL 50/50

Theme: Finance 37/75

49.7%

87/175

scored in talegri - developer
auction test in 60 min on 17
Aug 2020 21:34:56 CEST

Recruiter/Team Comments:

No Comments.

Question Description Time Taken Score Status

Q1 Growth in 2 Dimensions Coding 36 min 42 sec 0/ 50

Q2 Youngest Employees DbRank 6 min 18 sec 50/ 50

Q3 Profit Targets Coding 17 min 53 sec 37/ 75

Growth in 2 Dimensions Coding Easy Loops Problem Solving Arrays

Interviewer Guidelines

QUESTION DESCRIPTION

 

 

 

QUESTION 1

Wrong Answer

S 0




talegri - developer auction test **********

https://www.hackerrank.com/x/tests/864906/candidates/16704370/report/tests
https://www.hackerrank.com/x/tests/864906/candidates/16704370/report

/

Start with an infinite two dimensional grid filled with zeros, indexed from (1,1) at the bottom left corner with
coordinates increasing toward the top and right. Given a series of coordinates (r, c), where r is the ending
row and c is the ending column, add 1 to each element in the range from (1,1) to (r, c) inclusive. Once all
coordinates are processed, determine how many cells contain the maximal value in the grid.

Example
upRight = ["1 4", "2 3", "4 1"]

The two space-separated integers within each string represent r and c respectively. The following diagrams
show each iteration starting at zero. The maximal value in the grid is 3, and there is 1 occurrence at cell (1,
1).

Initial Grid

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 2 3 4

1

2

3

4

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1

1 2 3 4

1

2

3

4

Step 0: r = 1, c = 4

0 0 0 0

0 0 0 0

1 1 1 0

2 2 2 1

1 2 3 4

1

2

3

4

Step 1: r = 2, c = 3

1 0 0 0

1 0 0 0

2 1 1 0

3 2 2 1

1 2 3 4

1

2

3

4

Step 2: r = 4, c = 1

Function Description
Complete the function countMax in the editor below.

countMax has the following parameter(s):
 string upRight[n]: an array of strings made of two space-separated integers, r and c.

Return
 long: the number of occurrences of the final grid's maximal element
Constraints

1 ≤ n ≤ 100

1 ≤ number of rows, number of columns ≤ 10

Input Format for Custom Testing

Input from stdin will be processed as follows and passed to the function.

The first line contains an integer n, the size of the array upRight.
Each of the next n lines contains a string of two space-separated integers representing coordinates r
and c for element upRight[i].

Sample Case 0

Sample Input

STDIN Function

----- --------

3 → upRight[] size n = 3

2 3 → upRight = ['2 3', '3 7', '4 1']

Score 0

6

/

p g , ,

3 7

4 1

Sample Output

2

Explanation
Given upRight = ["2 3", "3 7", "4 1"]:

Initial Grid

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 2 3 4 5 6 7

1

2

3

4

Step 0 : r = 2, c = 3

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1 0 0 0 0

1 1 1 0 0 0 0

1 2 3 4 5 6 7

1

2

3

4

Step 1: r = 3, c = 7

0 0 0 0 0 0 0

1 1 1 1 1 1 1

2 2 2 1 1 1 1

2 2 2 1 1 1 1

1 2 3 4 5 6 7

1

2

3

4

Step 2: r = 4, c = 1

1 0 0 0 0 0 0

2 1 1 1 1 1 1

3 2 2 1 1 1 1

3 2 2 1 1 1 1

1 2 3 4 5 6 7

1

2

3

4

The portion of the infinite grid corresponding to cells (r, c) where 1 ≤ r ≤ 4 and 1 ≤ c ≤ 7

After processing all n = 3 coordinate pairs, the maximum value in any cell is 3. Because there are two
such cells with this maximal value, return 2 as the answer.

INTERVIEWER GUIDELINES

Hint 1

Since number of rows and columns is of the order of 10^6, the construction of the matrix is impossible.
Calculate the answer using rows and columns separately.

Hint 2

Use difference array to update the range [1, row] and [1, column] in each operation.

Solution

Concepts Covered: Basic Programming Skills, Loops, Arrays, Prefix sums, Counting, Problem
Solving. The problem tests the candidate's ability to use loops, array handling, and the difference
arrays. It requires the candidate to come up with an algorithm to find the number of cells with the
maximum value after a series of range submatrix updates in a constrained time and space complexity.

Optimal Solution: We don't need to construct the whole matrix since it would not fit into the required
space complexity.
Since for a particular operation, the whole submatrix from (1, 1) to (r, c) is updated by 1, we can
calculate the number of times each row and column is updated. This can be done using difference
array, which allows O(1) update over a range [l, r].
So let rows[] and columns[] be the two arrays of size = mx(where mx = 10^6 the maximum number of
rows and columns possible), which denote that how many times a particular row or column,
represented by rows[i] and columns[i] is updated.
Let (r, c) be the current operation. We can do the following:

rows[1]++, rows[r + 1]--
col[1]++ col[c + 1]

/

col[1]++, col[c + 1]--
Finally we must take a prefix sum from left to right for each rows[] and columns[].
So to find the number of cells with the maximum number(max), we can calculate cnt_row and cnt_col.
cnt_row = The number of cells i, in rows[i] such that rows[i] = max
cnt_col = The number of cells i, in columns[i] such that columns[i] = max

So the answer = cnt_row * cnt_col.
Time Complexity: O(max(row, column)).

def countMax(upRight):

 n = len(upRight)

 # initialize arrays with zeros

 # size is fixed by constraints

 row = [0] * 1000005

 col = [0] * 1000005

 for i in range(n):

 # get the indices per query

 li = upRight[i].split(" ")

 # update appropriate rows and columns

 # for ranges where operations occur

 row[1] += 1

 row[int(li[0]) + 1] -= 1

 col[1] += 1

 col[int(li[1]) + 1] -= 1

 # calculate prefix sums by row and by column

 # while discovering the global maximum value

 sum1 = 0

 sum2 = 0

 mx = 0

 for i in range(1000005):

 sum1 += row[i]

 row[i] = sum1

 sum2 += col[i]

 col[i] = sum2

 mx = max(mx, row[i])

 mx = max(mx, col[i])

 # count the number of cells matching the global maximum

 cnt1 = 0

 cnt2 = 0

 for i in range(1000005):

 if(row[i] == mx):

 cnt1 += 1

 if(col[i] == mx):

 cnt2 += 1

 return cnt1 * cnt2

Brute Force Approach: Construct a matrix with the maximum possible rows and columns. For each
query, update the whole submatrix from (1, 1) to (r, c) in O(n^2) complexity. After all the updates, find
the number of cells in the matrix with the maximum value by iterating through the whole matrix.
Time Complexity: O(rows * columns * k), where the matrix has dimensions rows * columns, and k is
the total number of operations.

Error Handling:

1. While updating the rows and columns, for implementing difference array trick, to update the range [l,
r], its necessary to increment the index (r + 1) by 1 and not index r.
2. To count the value at each row and column index a prefix sum of both the difference arrays must be
taken.
3. Since the maximum number of rows and columns is 10^6, so candidates must be careful to declare
the row and column count array as the maximum size only and not less than that.

Complexity Analysis

/

Time Complexity - O(mx), where mx = 10^6, the number of rows and columns possible.
Space Complexity - O(mx) .

Follow up Question

Let's suppose we need now to count the number of cells in the matrix which have the minimum non-
zero value.

Solution: We now count cnt_row and cnt_col, which denotes the number of rows and columns with
value = min.

Psuedo Code -

def countMax(upRight):

 # Write your code here

 n = len(upRight)

 row = [0] * 1000005

 col = [0] * 1000005

 for i in range(n):

 li = upRight[i].split(" ")

 row[1] += 1

 row[int(li[0]) + 1] -= 1

 col[1] += 1

 col[int(li[1]) + 1] -= 1

 sum1 = 0

 sum2 = 0

 mn = 100000000

 for i in range(1000005):

 sum1 += row[i]

 row[i] = sum1

 sum2 += col[i]

 col[i] = sum2

 mn = min(mn, row[i])

 mn = min(mn, col[i])

 cnt1 = 0

 cnt2 = 0

 for i in range(1000005):

 if(row[i] == mn):

 cnt1 += 1

 if(col[i] == mn):

 cnt2 += 1

 return cnt1 * cnt2

Follow up Question

Let's suppose now you are given queries Q, where you need to count the number of cells having value
= Q[i].

Solution: After calculating rows[] and columns[], maintain two frequency arrays that denote the number
of rows and columns which were updated freq[i] times.
So the solution to each query is ans[Q[i]] = freq_row[Q[i]] * freq_col[Q[i]].

Psuedo Code -

def countMax(upRight, query):

 # Write your code here

 n = len(upRight)

 row = [0] * 1000005

 col = [0] * 1000005

 for i in range(n):

 li = upRight[i].split(" ")

 row[1] += 1

row[int(li[0]) + 1] -= 1

/

CANDIDATE ANSWER

 row[int(li[0]) + 1] = 1

 col[1] += 1

 col[int(li[1]) + 1] -= 1

 sum1 = 0

 sum2 = 0

 mn = 100000000

 freq_row = [0] * (n + 1)

 freq_col = [0] * (n + 1)

 for i in range(1000005):

 sum1 += row[i]

 row[i] = sum1

 sum2 += col[i]

 col[i] = sum2

 freq_row[row[i]]++

 freq_col[col[i]]++

 ans = [0] * len(query)

 for i in range(len(query)):

 ans[i] = freq_row[query[i]] * freq_col[query[i]]

 return ans

Language used: C#

class Result

{

 /*

 * Complete the 'countMax' function below.

 *

 * The function is expected to return a LONG_INTEGER.

 * The function accepts STRING_ARRAY upRight as parameter.

 */

 public static long countMax(List<string> upRight)

 {

 long max = long.MinValue;

 int[] rArray = new int[upRight.Count];

 int[] cArray = new int[upRight.Count];

 int i = 0;

 foreach(string s in upRight)

 {

 string[] splittedString = s.Split(' ');

 rArray[i] = int.Parse(splittedString[0]);

 cArray[i] = int.Parse(splittedString[1]);

 i++;

 }

 int rArrayMax = rArray.Max();

 int cArrayMax = cArray.Max();

 int[,] grid = new int[rArrayMax, cArrayMax];

 for(int j = 0; j < upRight.Count; j++)

 {

 int r = rArray[j];

 int c = cArray[j];

 for(int k = 0 ; k < r; k++)

 {

 for(int l = 0 ; l < c; l++)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

/

 {

 grid[k,l] ++;

 if(max < grid[k,l])

 {

 max = grid[k,l];

 }

 }

 }

 }

 return max;

 }

}

TESTCASE DIFFICULTY TYPE STATUS SCORE TIME
TAKEN

MEMORY
USED

Testcase 0 Easy Sample
case

Wrong Answer 0 0.0761 sec 18.3 KB

Testcase 1 Easy Sample
case

Wrong Answer 0 0.0866 sec 18.3 KB

Testcase 2 Easy Sample
case

Wrong Answer 0 0.1008 sec 18 KB

Testcase 3 Easy Sample
case

Wrong Answer 0 0.0827 sec 18.1 KB

Testcase 4 Easy Sample
case

Terminated due to
timeout

0 3.0079 sec 110 KB

Testcase 5 Easy Hidden case Runtime Error 0 0.0778 sec 17.2 KB

Testcase 6 Easy Hidden case Runtime Error 0 0.079 sec 17.4 KB

Testcase 7 Easy Hidden case Runtime Error 0 0.0864 sec 17.4 KB

Testcase 8 Easy Hidden case Runtime Error 0 0.0988 sec 17.2 KB

Testcase 9 Easy Hidden case Runtime Error 0 0.0762 sec 17.3 KB

Testcase
10

Easy Hidden case Wrong Answer 0 0.0802 sec 18.1 KB

No Comments

Youngest Employees DbRank

There are two data tables with employee information: EMPLOYEE and EMPLOYEE_UIN.
Query the tables to generate a list of all employees who are less than 25 years old first in
order of NAME, then of ID, both ascending. The result should include the UIN followed by
the NAME.

Note: While the secondary sort is by ID, the result includes UIN but not ID.

Schema

SQL Easy Joins Interviewer Guidelines

QUESTION DESCRIPTION

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

 

 

 

 

 

 

 

 

 

 

 

QUESTION 2

Correct Answer

Score 50




/

EMPLOYEE

Name Type Description

ID Integer The ID of the employee. This is a primary key.

NAME String The name of the employee having [1, 20] characters.

AGE Integer The age of the employee.

ADDRESS String The address of the employee having [1, 25] characters.

SALARY Integer The salary of the employee.

EMPLOYEE_UIN

Name Type Description

ID Integer The ID of the employee. This is a primary key.

UIN String The unique identification number of the employee.

Sample Data Tables

Sample Input

EMPLOYEE

ID NAME AGE ADDRESS SALARY

1 Sherrie 23 Paris 74635

2 Paul 30 Sydney 72167

3 Mary 24 Paris 75299

4 Sam 47 Sydney 46681

5 Dave 22 Texas 11843

EMPLOYEE_UIN

ID UIN

1 57520-0440

2 49638-001

3 63550-194

4 68599-6112

5 63868-453

Sample Output

63868-453 Dave

63550-194 Mary

57520-0440 Sherrie

Explanation

/

Sherrie is 23 years old and has UIN 57520-0440. This record is printed.

Paul is 30 years old and has UIN 49638-001. This record is not printed.

A similar analysis is done on the remaining records.

None of the three names of people less than 25 years old is repeated, so print them in alphabetical
order. There is no additional sorting by ID in this case.

INTERVIEWER GUIDELINES

CANDIDATE ANSWER

Solution

Concepts covered: e.g. JOIN, ORDER BY
Solution:
Join the tables to get UIN. Filter results to age < 25 and sort ascending by name, id.

SELECT eu.uin, e.name

FROM employee e

JOIN employee_uin eu

ON e.id = eu.id

WHERE e.age < 25

ORDER BY e.name, e.id;

Note that the secondary sort is on ID but data reported is UIN.

Language used: MS SQL

/*

Enter your query here.

Please append a semicolon ";" at the end of the query and enter your query in

a single line to avoid error.

*/

SELECT eUIN.UIN, e.NAME FROM EMPLOYEE e

LEFT JOIN EMPLOYEE_UIN eUIN on e.ID = eUIN.ID --INNER JOIN if we want to

exclude potential missing employees in EMPLOYEE_UIN

WHERE e.AGE < 25

ORDER BY e.NAME, e.ID;

Time taken: 0.04 sec

No Comments

Profit Targets Coding

A financial analyst is responsible for a portfolio of profitable stocks represented in an array. Each item in
the array represents the yearly profit of a corresponding stock. The analyst gathers all distinct pairs of
stocks that reached the target profit. Distinct pairs are pairs that differ in at least one element. Given the
array of profits, find the number of distinct pairs of stocks where the sum of each pair's profits is exactly
equal to the target profit.

Example
stocksProfit = [5, 7, 9, 13, 11, 6, 6, 3, 3]
target = 12 profit's target

Binary Search Data Structures Medium Algorithms Arrays

Problem Solving Theme: Finance

QUESTION DESCRIPTION

1

2

3

4

5

6

7

8

9

QUESTION 3

Correct Answer

Score 37




/

There are 4 pairs of stocks that have the sum of their profits equals to the target 12 . Note that
because there are two instances of 3 in stocksProfit there are two pairs matching (9, 3): stocksProfits
indices 2 and 7, and indices 2 and 8, but only one can be included.

There are 3 distinct pairs of stocks: (5, 7), (3, 9), and (6, 6) and the return value is 3.

Function Description
Complete the function stockPairs in the editor below.

stockPairs has the following parameter(s):
 int stocksProfit[n]: an array of integers representing the stocks profits
 target: an integer representing the yearly target profit
Returns:
 int: the total number of pairs determined

Constraints

1 ≤ n ≤ 5 × 10

0 ≤ stocksProfit[i] ≤ 10

0 ≤ target ≤ 5 × 10

Input Format for Custom Testing

Input from stdin will be processed as follows and passed to the function.

The first line contains an integer n, the size of the array stocksProfit.
The next n lines each contain an element stocksProfit[i] where 0 ≤ i < n.
The next line contains an integer target, the target value.

Sample Case 0

Sample Input 0

STDIN Function

----- --------

6 → stocksProfit[] size n = 6

1 → stocksProfit = [1, 3, 46, 1, 3, 9]

3

46

1

3

9

47 → target = 47

Sample Output 0

1

Explanation 0

There are 4 pairs where stocksProfit[i] + stocksProfit[j] = 47

1. (stocksProfit0] = 1, stocksProfit[2] = 46)

2. (stocksProfit[2] = 46, stocksProfit[0] = 1)

3. (stocksProfit[2] = 46, stocksProfit[3] = 1)

4. (stocksProfit[3] = 1, stocksProfit[2] = 46)

Since all four pairs contain the same values, there is only 1 distinct pair of stocks : (1, 46).

Sample Case 1

Sample Input 1

STDIN Function

----- --------

7 → stocksProfit[] size n = 7

5

9

9

/

6 → stocksProfit = [6, 6, 3, 9, 3, 5, 1]

6

3

9

3

5

1

12 → target = 12

Sample Output 1

2

Explanation 1

There are 5 pairs where stocksProfit[i] + stocksProfit[j] = 12:

1. (stocksProfit[0] = 6, stocksProfit[1] = 6)

2. (stocksProfit[1] = 6, stocksProfit[0] = 6)

3. (stocksProfit[2] = 3, stocksProfit[3] = 9)

4. (stocksProfit[3] = 9, stocksProfit[2] = 3)

5. (stocksProfit[3] = 9, stocksProfit[4] = 3)

6. (stocksProfit[4] = 3, stocksProfit[3] = 9)

The first 2 pairs are the same, as are the last 4. There are only 2 distinct pairs of stocks: (3, 9) and (6,
6).

CANDIDATE ANSWER

Language used: C#

class Result

{

 /*

 * Complete the 'stockPairs' function below.

 *

 * The function is expected to return an INTEGER.

 * The function accepts following parameters:

 * 1. INTEGER_ARRAY stocksProfit

 * 2. LONG_INTEGER target

 */

 public static int stockPairs(List<int> stocksProfit, long target)

 {

 Dictionary<long, long> uniquePairs = new Dictionary<long, long>();

 for(int i = 0 ; i < stocksProfit.Count ; i++)

 {

 for(int j = i + 1 ; j < stocksProfit.Count ; j++)

 {

 if(stocksProfit[i] + stocksProfit[j] == target)

 {

 uniquePairs[Math.Min(stocksProfit[i], stocksProfit[j])] =

Math.Max(stocksProfit[i], stocksProfit[j]);

 }

 }

 }

 return uniquePairs.Count;

 }

}

TESTCASE DIFFICULTY TYPE STATUS SCORE TIME
TAKEN

MEMORY
USED

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

/

TAKEN USED

TestCase 0 Easy Sample
case

Success 1 0.0723 sec 17.4 KB

TestCase 1 Easy Sample
case

Success 1 0.0761 sec 17.5 KB

TestCase 2 Easy Sample
case

Success 1 0.0754 sec 17.5 KB

TestCase 3 Easy Hidden
case

Success 2 0.076 sec 17.5 KB

TestCase 4 Easy Hidden
case

Success 2 0.0727 sec 17.4 KB

TestCase 5 - O(N^2) Easy Sample
case

Success 2 0.0736 sec 17.4 KB

TestCase 6 - O(N^2) Easy Hidden
case

Success 2 0.0797 sec 17.5 KB

TestCase 7 - O(N^2) Easy Hidden
case

Success 2 0.0666 sec 17.7 KB

TestCase 8 - O(N^2) Medium Hidden
case

Success 4 0.1659 sec 17.7 KB

TestCase 9 - O(N^2) Medium Hidden
case

Success 4 0.0979 sec 17.7 KB

TestCase 10 -
O(N^2)

Medium Hidden
case

Success 5 0.2988 sec 17.7 KB

TestCase 11 Medium Sample
case

Success 5 0.477 sec 18.1 KB

TestCase 12 -
O(N^2)

Medium Hidden
case

Success 6 0.2549 sec 17.6 KB

TestCase 14 -
O(NlogN)

Hard Hidden
case

Terminated due to
timeout

0 3.004 sec 21.3 KB

TestCase 16 -
O(NlogN)

Hard Hidden
case

Terminated due to
timeout

0 3.0063 sec 22.4 KB

No Comments

PDF generated at: 18 Aug 2020 09:09:33 UTC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

